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Chapter 1

Messier: A Detailed NVM-Based
DIMM Model for the SST Simulation
Framework

1.1 Overview of Messier

DRAM technology is the main building block of main memory, however, DRAM scaling is becoming very
challenging. The main issues for DRAM scaling are the increasing error rates with each new generation,
the geometric and physical constraints of scaling the capacitor part of the DRAM cells, and the high power
consumption caused by the continuous need for refreshing cell values. At the same time, emerging Non-
Volatile Memory (NVM) technologies, such as Phase-Change Memory (PCM), are emerging as promising
replacements for DRAM. NVMs, when compared to current technologies e.g., NAND-based flash, have
latencies comparable to DRAM. Additionally, NVMs are non-volatile, which eliminates the need for refresh
power and enables persistent memory applications. Finally, NVMs have promising densities and the potential
for multi-level cell (MLC) storage.

NVM-Based DIMM

NVM ChipNVM ChipNVM ChipNVM ChipNVM ChipNVM ChipNVM ChipNVM Chip

Rank

Bank

NVM Internal 
Controller

Write 
Buffer

Outstanding 
Requests Tracker

Request
Buffer Scheduler

Wear 
Leveler

Power 
Manager

NVM ChipNVM ChipNVM ChipNVM ChipNVM ChipNVM ChipNVM ChipNVM Chip

Rank

Figure 1.1. Simple illustration of the main components of an NVM-
based DIMM.

Messier is proposed as an open-source academic model to study the architectural trade-offs, trends and
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design options, when using NVM-based DIMMs. The key advantage of Messier its ability to model a
modern NVM-based DIMM similar to what will most likely appear on the market. Accordingly, Messier
enables providing architectural insights and design suggestions to reshape the next generation of NVM-based
DIMMs. Messier is adopting a model similar to early prototypes of NVM-based DIMMs[2], and the designs
appear on publicly available industrial patent applications[1].

Figure 1.1 depicts the overall picture of the NVM-based DIMM model that Messier adopts. The key
aspects of the model are: an internal logic controller, the availability of an internal persistent write buffer
to mask the write latency, DRAM-like organization of banks and ranks, and a power management unit that
limits the number of current reads and writes based on a pre-defined power budget.

1.1.1 Why is Modeling Non-Volatile Memories Important?

Emerging NVMs have different characteristics compared to DRAM such as asymmetric read and write la-
tencies and significant differences in read access latencies for different access patterns[3, 4, 5, 6]. Accordingly,
projecting the performance of applications when using NVMs, and their sensitivity to different design pa-
rameters, can help us understanding how to tune the design of future systems to take advantage of emerging
NVMs without sacrificing performance.

1.1.2 What Analyses can the Messier Model Support?

• The Internal Design of NVM-based DIMMs: Messier allows users to vary the number of ranks,
the number of banks, the size of row buffers, the maximum number of outstanding requests, the write
buffer size, the write buffer flushing policy, the maximum number of concurrent reads/writes based on
power budget, and the memory interleaving policy.

• The Latencies of Emerging NVMs: Messier allows users to vary the latencies of the modeled
NVM devices, allowing researchers to project the performance of different NVM technologies, e.g.,
Phase-Change Memory, Memristor or Spin-Transfer Torque. Messier also distinguishes between read
and write latencies, hence enabling NVMs with asymmetric read/write latencies.

The details of how to use Messier and vary its parameters will be discussed in the next sections.
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Chapter 2

Messier Specification (Version 1.0)

In this chapter, we detail the specifications of the Messier SST element and its model. Messier is implemented
as an element of the Structural Simulation Toolkit (SST) simulator [7]. Figure 2.1 depicts the architecture
of Messier, including the main classes:

• NVM DIMM Class: The TLB class is defined inside NVM DIMM.h and implemented in NVM DIMM.cc.
The NVM DIMM class is used to define NVM-Based DIMM structures with the specified parameters.
Each NVM DIMM object models a single DIMM with its own internal ranks and banks.

• RANK Class: The RANK class is defined inside Rank.h. The RANK class is used to define a single
rank of NVM chips.

• BANK Class: The BANK class is defined inside Bank.h. It defines the bank structure inside a rank.

• NVM WRITE BUFFER Class: The WriteBuffer class is defined inside Bank.h. It defines the
bank structure inside a rank.

• Messier Class: The Messier class is defined inside Messier.h and implemented in Messier.cc and
libMessier.cpp. The Messier class is mainly used to instantiate an NVM DIMM objects as SST com-
ponents.

Messier

bus

Bank Bank

Bank Bank

Bank Bank

Bank Bank

Bank Bank

Bank Bank

Bank Bank

Bank Bank

Rank

Rank

NVM_DIMM

NVM_WRITE_BUFFER

memHierarchy.MemController

Backend = memHierarchy.Messier
cube_link

LinkLink
direct_linkCache

Hierarchy

Figure 2.1. The architecture of Messier.
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The key object inside the Messier component is NVM-DIMM. NVM-DIMM contains severals structures,
shown in Figure 2.2. At each clock cycle, the NVM-DIMM controller does the following: 1 check if the write
buffer has more entries than the specified threshold, i.e., write priority inversion, or no current transactions,
then dispatch the write to the corresponding bank. Note that this process allocates the rank for the time
needed for sending the data and the command, while the bank is allocated according to the specified latency
of a write to the PCM chips. 2 the transaction queue is checked to dispatch a request, based on the
scheduling policy, e.g., prioritize row buffer hits then old requests 3 a write request is placed on the write
buffer, while a read request is sent to the corresponding bank and placed in the outstanding requests queue.
Note that before dispatching any request, we need to check that both the corresponding banks and ranks are
idle, in addition to not exceeding the maximum number of permitted outstanding requests (reads or writes).

transactions

Memory Controller Backend

Write Buffer

Rank Rank

1 If ( size > threshold and writes are less than max)
 flush one write entry 

2 find a  transaction ready to execute

Outstanding

3 Add the dispatched transaction to outstanding
and execute it

ready_trans

write request

read request

Figure 2.2. The algorithm and internal structures of NVM DIMM.

In the next section, we will study the details of each class and its parameters.

2.1 Example of Messier Usage

# Instantiating an instance of the Messier

messier_inst = sst.Component("NVMmemory", "Messier")

# Note that the size is indicated at the memory backend

messier_inst.addParams({

"tCL" : "70", # This indicates the latency (cycles) of reading data from the row buffer

"tRCD" : "200", # Indicates the latency (cycles) installing a row from the NVM chips into the

row buffer

"clock" : "1GHz", # The frequency operating the DIMM controller

"tCL_W" : "100", # This is the latency (cycles) of writing a row in the NVM chips

"write_buffer_size" : "32", # The max number of entries in the write buffer
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"flush_th" : "90", # The threshold of filled entries (here it is 90\% of max entries) when

writes are given priority to be flushed from the write buffer

"num_banks" : "16", # this is the number of banks inside each rank

"max_outstanding" : "32", # this indicates the maximum number of outstanding reads allowed

"max_current_weight" : "160", # this indicates the maximum relative power allowed

"read_weight" : "5", # this indicates the relative power of each currently executing read

request

"write_weight" : "50", # this indicates the relative power of each currently executing write

request

"max_writes": "8", # this indicates the maximum number of concurrent writes to NVM chips

"row_buffer_size" : "8192", # this indicates the row buffer size in bytes

"cacheline_interleaving": "0", # 0 means row interleaving (consecutive cachelines go to the

same bank), while 1 means cacheline interleaving (consecutive cachelines go to

consecutive banks)

})

In the next section, we will study an example of the performance sensitivity to Messier’s parameters.

11



Chapter 3

Application Performance Sensitivity
to Messier Parameterization

In this chapter, we will vary different parameters for the Messier unit and study how this affects the perfor-
mance.

3.1 Methodology

We run our simulation using the SST simulator [7] modified to include the Messier model. We use the
XSBench [8], MiniFE and Pennant miniapps as case studies for our demo. In each run, we simulate 8
cores with 2GHz frequency, while running 8 threads from each miniapp until at least one core executes 20M
instructions (approximately 160M total instructions).

For each cores, we model an issue width of 3 instructions and assume a maximum of 16 outstanding
memory requests. Our default configurations for Messier is shown below:

messier_params = {

"clock" : clock, # same as the cpu clock

"tCL" : 30,

"tRCD" : 300,

"max_writes" : 4,

"tCL_W" : 1000,

"write_buffer_size" : 32,

"flush_th" : 90,

"num_banks" : 32,

"max_outstanding" : 32,

"max_current_weight" : 32*50,

"read_weight" : "5",

"write_weight" : "5",

"row_buffer_size" : "8192",

"cacheline_interleaving" : "1",

}

3.1.1 NVM Read Latency

The read latency of NVM devices is one of the most critical aspects, mainly due to the nature of read
requests being in the critical path. NVM read latency can vary based on the technology, number of levels in
the cell, etc. Applications that exhibit good spatial behavior will enjoy a higher row buffer hit rate, avoiding
accessing NVM chips for a large percentage of accesses.
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Figure 3.1. The impact of NVM read latency on performance.

As shown in Figure 3.1, applications with poor spatial locality, e.g., XSBench, are very sensitive to the
NVM latency, as most of the accesses will go directly to the NVM chips, due to poor row buffer locality. In
contrast, Pennant, which exhibits a better low buffer locality, is only slightly impacted by the NVM latency.

3.1.2 The Impact of Maximum Outstanding Read Requests

The maximum number of concurrent read requests that can be serviced in the NVM-DIMM affects the
performance significantly. The impact of this parameter depends on how memory intensive the application
is (the number of memory requests that reach the memory per time unit) and the number of bank conflicts
caused by the access pattern.

Figure 3.2 shows the impact of this parameter on the performance of different applications. We can
observe that XSBench benefits the most from increasing the number of outstanding requests, mainly due to
its memory intensity and the randomness of the memory requests (less accesses to the same bank). MiniFE
also shows some sensitivity to the maximum number of outstanding requests. In contrast, Pennant rarely
benefits from increasing the maximum number of allowed outstanding requests.

3.1.3 The Impact of Write Latency on Performance

The write latency of NVMs can vary significantly between different technologies. While the write buffer can
help mask the write latency, a high write latency can quickly fill up the write buffer and place back-pressure
on the memory controller, which reduces the number of requests that can be submitted to the NVM-DIMM.
Figure 3.3 shows the impact of the write latency on the three test applications.

We observe that XSBench has less sensitivity to the write latency, which is likely due to the small number
of dirty cache blocks compared to other applications. In contrast, we observe that Pennant is highly sensitive
to the write latency. Note that our write policy is based on a threshold value, where if the percentage of write
entries exceeds that threshold, the writes become a higher priority than reads. Additionally, the controller
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flushes write requests from the write buffer whenever the transaction queue is empty.

3.1.4 The Impact of Maximum Number of Concurrent Writes on Performance

While this parameter can be restricted by the power budget, allowing a high number of concurrent writes
enables fast spilling of writes from the write buffer, reducing the possibility of back-pressuring the memory
controller. Figure 3.4 shows the sensitivity of the maximum concurrent writes on the performance of the
tested applications.
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Figure 3.4. The impact of the maximum number of outstanding writes
on performance.

From the figure, we can observe that Pennant and MiniFE are very sensitive to this parameter. Mean-
while, XSBench is barely affected, which is consistent with the write latency study in Section 3.1.3.

3.1.5 The Impact of the Number Banks on Performance

The number of banks determines the level of potential parallelism inside each rank. Figure 3.5 shows how
the applications are affected by the number of banks parameter.

We can observe that most applications benefit from increasing the number of banks up to 32, however,
the performance gains start leveling-off at 32 banks, because the memory controller (the backend), can only
handle a maximum of 32 pending requests to the NVM-DIMM.

3.1.6 The Impact of Interleaving

As mentioned earlier, Messier enables using cacheline interleaving (default), where consecutive cachelines go
to consecutive banks, and row interleaving, where consecutive cachelines go to the same bank. The three
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graphs in Figure 3.6 show the impact of the interleaving on each application while varying the maximum
number of outstanding requests.

From these results, we can observe that all three applications receive some benefit when using row
interleaving over cacheline interleaving.
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Chapter 4

Conclusion

In conclusion, we have presented Messier as a detailed NVM-based DIMM model for the SST simulation
framework. We explained the options and parameters available in the model and discussed how each can
be configured and how the performance would be affected. Finally, we evaluated MiniFe, Pennant, and
XSBench as a short case study to show how application performance can vary with differing configurations
of Messier’s components. We hope that Messier will be used to evaluate the impact of using non-volatile
memories on future system for different workloads.
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